FIND ME ON

GitHub

LinkedIn

Taylor Series

🌱

Definition

Let URn\mathcal{U}\subset \mathbb{R}^{n} be an open set and and let f:URmf:\mathcal{U}\to \mathbb{R}^{m} be smooth. The Taylor series for ff about x0\boldsymbol x_{0} is the formal power series r=0+1r!Drf(x0)(v,,v)r copies,vRn\sum_{r=0}^{+\infty} \frac{1}{r!}\boldsymbol D^{r}f(\boldsymbol x_{0})\cdot \underbrace{(\boldsymbol v, \dots, \boldsymbol v)}_{r\text{ copies}},\quad\boldsymbol v\in \mathbb{R}^{n}

Let URn\mathcal{U}\subset \mathbb{R}^{n} be an open set and and let f:URmf:\mathcal{U}\to \mathbb{R}^{m} be smooth. The function ff is real-analytic if, for every x0U\boldsymbol x_{0}\in \mathcal{U}, there exists ρ>0\rho>0 such that the Taylor Series converges to f(x0+v) provided that vRn<ρ.f(\boldsymbol x_{0}+\boldsymbol v)\text{ provided that }\lVert \boldsymbol v \rVert _{\mathbb{R}^{n}}<\rho.A real-analytic map is said to be of class Cω\boldsymbol C^{\boldsymbol \omega}.

If URn\mathcal{U\subset \mathbb{R}^{n}} and if f:URmf:\mathcal{U}\to \mathbb{R}^{m} is Differentiation, then, for any rNr\in \mathbb{N} and for any x0U\boldsymbol x_{0}\in \mathcal{U}, f(x0+v)=k=0r1k!Dkf(x0)(v,,v)+o(vRnr+1)f(\boldsymbol x_{0}+\boldsymbol v)=\sum_{k=0}^{r} \frac{1}{k!}\boldsymbol D^{k}f(\boldsymbol x_{0})\cdot(\boldsymbol v, \dots,\boldsymbol v)+o(\lVert \boldsymbol v \rVert _{\mathbb{R}^{n}}^{r+1})

Linked from