FIND ME ON

GitHub

LinkedIn

Measurability Criterion for Topological Codomain

🌱

Theorem

Let (X,M)(X,\mathscr{M}) be a measurable space, let (Y,TY)(Y,\mathscr{T}_{Y}) be a Topological Space, and f:X→Yf:X\to Y a function. 1. Let N={EāŠ†Y:fāˆ’1(E)∈M}\mathscr{N}=\{ E\subseteq Y:f^{-1}(E)\in \mathscr{M} \}. Then N\mathscr{N} is a σ-algebra of subsets of YY. 2. If EāŠ†YE\subseteq Y is a Borel set and ff is M\mathscr{M}-measurable, then fāˆ’1(E)∈Mf^{-1}(E)\in\mathscr{M} 3. If (Z,TZ)(Z,\mathscr{T}_{Z}) is a Topological Space and g:Y→Zg:Y\to Z is a Borel function, then g∘f:X→Zg\circ f:X\to Zis M\mathscr{M}-measurable.

Linked from