FIND ME ON

GitHub

LinkedIn

Semialgebra

🌱

Definition
MeasureTheoryAbstractAlgebra

A semialgebra (or semiring of sets) A2X\mathscr{A}\subset2^{X} is a collection of sets such that 1. A\emptyset\in\mathscr{A} 2. A,BA    ABAA,B\in\mathscr{A}\implies A\cap B\in\mathscr{A} 3. For BAB\in\mathscr{A}, there are pairwise disjoint sets S1,,SnAS_{1},\dots,S_{n}\in\mathscr{A} s.t. j=1nSj=XB=Bc\bigsqcup_{j=1}^{n}S_{j}=X\setminus B=B^{c}

The set {I[0,1]:I is an interval}\{ I\subseteq[0,1]:I\text{ is an interval} \}is a semialgebra.

The set {I1×I2[0,1]2:I1,I2 are intervals in [0,1]}\{ I_{1}\times I_{2}\subseteq[0,1]^{2}:I_{1},I_{2}\text{ are intervals in }[0,1] \}is a semialgebra.

Every algebra is a semialgebra.

Linked from