FIND ME ON

GitHub

LinkedIn

Level Set

🌱

Definition

level set of a real-valued function f:RnRf:\mathbb{R}^{n}\to \mathbb{R} of nn real variables is a set where the function takes on a given constant value cc, that is: Lc(f)={(x1,,xn)Rnf(x1,,xn)=c}L_{c}(f)=\{(x_{1},…,x_{n})\in \mathbb{R}^{n}∣f(x_{1},…,x_{n})=c\}

Lc+(f)={(x1,,xn)f(x1,,xn)c}L_{c}^{+}(f)=\left\{(x_{1},\dots ,x_{n})\mid f(x_{1},\dots ,x_{n})\geq c\right\}is called a superlevel set of f (or, alternatively, an upper level set of f). And a strict superlevel set of f is {(x1,,xn)f(x1,,xn)>c}\{(x_{1},…,x_{n})∣f(x_{1},…,x_{n})>c\}

Linked from