FIND ME ON

GitHub

LinkedIn

Intro to Safe Control

🌱

Let x˙(t)=f(x(t))\dot{x}(t)=f(x(t)) be a dynamical system where xRnx\in \mathbb{R}^{n}, assuming that the safe set C\mathcal{C} is the Level Set of a smooth function h:RnRh:\mathbb{R}^{n}\to \mathbb{R}, i.e. C:={xRn:h(x)0}\mathcal{C}:=\{ x\in \mathbb{R}^{n}:h(x)\ge 0 \} and that hx(x)0,xRn:h(x)=0.\frac{ \partial h }{ \partial x } (x)\not=0,\,\forall x\in \mathbb{R}^{n}:h(x)=0.Then, Nagumo’s Theorem gives necessary and sufficient conditions for set invariance based upon the derivative of hh and the boundary of C\mathcal{C}: C invariant    h˙(x)0,xC\mathcal{C}\text{ invariant}\iff \dot{h}(x)\ge0\,,\forall x\in\partial \mathcal{C}