FIND ME ON

GitHub

LinkedIn

Properties of Limit Inferior & Limit Superior

🌱

Theorem
Analysis

Let (an)nNRˉ(a_{n})_{n\in\mathbb{N}}\subseteq \bar{\mathbb{R}}. The liminf and limsup of (an)nN(a_{n})_{n\in\mathbb{N}} have the following properties: 1. lim infn1anlim supn1an\liminf_{n\ge 1}a_{n}\le\limsup_{n\ge 1}a_{n} 2. lim supn1(an)=lim infn1an\limsup_{n\ge 1}(-a_{n})=-\liminf_{n\ge 1}a_{n} 3. lim supn1an=lim infn1an    limnan exists and equals both\limsup_{n\ge 1}a_{n}=\liminf_{n\ge 1}a_{n}\implies \lim_{ n \to \infty } a_{n}\text{ exists and equals both} 4. lim supn1(an+αn)lim supn1an+lim supn1αn\limsup_{n\ge 1}(a_{n}+\alpha_{n})\le \limsup_{n\ge 1}a_{n}+\limsup_{n\ge 1}\alpha_{n}iff we don’t encounter \infty-\infty or +-\infty+\infty 5. If anαn,n1a_{n}\le \alpha_{n},\forall n\ge 1 then lim infn1anlim infn1αnlim supn1anlim supn1αn\begin{align*} &\liminf_{n\ge 1}a_{n}\le\liminf_{n\ge 1}\alpha_{n}\\ &\limsup_{n\ge 1}a_{n}\le\limsup_{n\ge 1}\alpha_{n} \end{align*}

Linked from