Let (an)n∈N⊆Rˉ. The liminf and limsup of (an)n∈N have the following properties: 1. n≥1liminfan≤n≥1limsupan 2. n≥1limsup(−an)=−n≥1liminfan 3. n≥1limsupan=n≥1liminfan⟹n→∞liman exists and equals both 4. n≥1limsup(an+αn)≤n≥1limsupan+n≥1limsupαniff we don’t encounter ∞−∞ or −∞+∞ 5. If an≤αn,∀n≥1 then n≥1liminfan≤n≥1liminfαnn≥1limsupan≤n≥1limsupαn