FIND ME ON

GitHub

LinkedIn

Limit Inferior

🌱

Definition

Definition

Let (an)nNRˉ(a_{n})_{n\in\mathbb{N}}\subseteq \bar{\mathbb{R}}. Define a new sequence (cn)nN(c_{n})_{n\in\mathbb{N}} as cn=infknakc_{n}=\inf_{k\ge n}a_{k}where we observe c1c2c_{1}\le c_{2}\le\dots (i.e. monotonically increasing). Then we define the limit inferior of our sequence as lim infn1an:=supn1cn=supn1infknak\liminf_{n\ge 1}a_{n}:=\sup_{n\ge 1}c_{n}=\sup_{n\ge 1}\inf_{k\ge n}a_{k}Let T={tRˉ:(ank)kN(an)nN:limkank=t}T=\{ t\in \bar{\mathbb{R}}: \exists(a_{n_{k}})_{k\in\mathbb{N}}\subset(a_{n})_{n\in\mathbb{N}}:\lim_{ k \to \infty }a_{n_{k}}=t \}. Then lim supn1an=suptTt\limsup_{ n \ge 1 }a_{n}=\sup_{t\in T}t


The limit inferior of (an)(a_n), lim infnan\liminf_{n\to\infty}a_n is defined as follows: 1. If (an)(a_n) is bounded below and TT\not=\emptyset then lim infnan\liminf_{n\to\infty}a_n is the smallest number in TT or lim infnan=infT\liminf_{n\to\infty}a_n=\inf T 2. If (an)(a_n) is not bounded below then lim infnan=\liminf_{n\to\infty}a_n=-\infty 3. If (an)(a_n) is bounded below and T=T=\emptyset then lim infnan=\liminf_{n\to\infty}a_n=\infty

Linked from