Definition
Let (an)n∈N⊆Rˉ. Define a new sequence (cn)n∈N as cn=k≥ninfakwhere we observe c1≤c2≤… (i.e. monotonically increasing). Then we define the limit inferior of our sequence as n≥1liminfan:=n≥1supcn=n≥1supk≥ninfakLet T={t∈Rˉ:∃(ank)k∈N⊂(an)n∈N:limk→∞ank=t}. Then n≥1limsupan=t∈Tsupt
The limit inferior of (an), n→∞liminfan is defined as follows: 1. If (an) is bounded below and T=∅ then liminfn→∞an is the smallest number in T or n→∞liminfan=infT 2. If (an) is not bounded below then n→∞liminfan=−∞ 3. If (an) is bounded below and T=∅ then n→∞liminfan=∞