FIND ME ON

GitHub

LinkedIn

Forward Invariant

🌱

Definition
SafeControl

Consider a set C\mathcal{C} and initial condition x(0)=x0x(0)=x_{0}. C\mathcal{C} is forward invariant if x0∈C  ⟹  x(t)∈C, ∀t≥0x_{0}\in \mathcal{C} \implies x(t)\in \mathcal{C},\,\forall t\ge 0i.e. if we start in C\mathcal{C} we stay in C\mathcal{C}.

The system xË™=fcl(x):=f(x)+g(x)k(x)\dot{x}=f_{\text{cl}(x)}:=f(x)+g(x)k(x)where k(x)=uk(x)=u is the feedback controller, is safe with respect to the set C\mathcal{C} if the set C\mathcal{C} is .