FIND ME ON

GitHub

LinkedIn

Probabilistic Safety

🌱

SafeControl

Let ϵ(0,1)\epsilon \in(0,1), and TNT\in \mathbb{N}. We say that the policy γ:XU\gamma:\mathbb{X}\to \mathbb{U} is ϵ\epsilon-safe over a time horizon TT if for any x0Cx_{0}\in \mathcal{C} — where C\mathcal{C} is some safe set — the iterates of xt+1=f(xt,ut,wt)x_{t+1}=f(x_{t},u_{t},w_{t}) under ut=γ(xt)u_{t}=\gamma(x_{t}) are such that P(t=0T{xtC})1ϵ\mathbb{P}\left( \bigcap_{t=0}^{T}\{ x_{t}\in \mathcal{C} \} \right)\ge 1-\epsilon

Let δ(0,1)\delta \in(0,1). The function h:XRh:\mathbb{X}\to \mathbb{R} is a δ\delta-probabilistic CBF if α[0,1]\exists\alpha \in[0,1] s.t. xC\forall x\in \mathcal{C}, uU\exists u\in \mathbb{U} s.t. P(h(f(x,u,w))αh(x))1δ\mathbb{P}(h(f(x,u,w))\ge\alpha h(x))\ge{1}-\delta where wμww\sim\mu_{w}. Whenever the parameter δ\delta is clear from the context we simply refer to hh as a probabilistic CBF.