FIND ME ON

GitHub

LinkedIn

Generalized Chinese Remainder Theorem

🌱

Theorem
NumberTheory

Theorem

Suppose that m1,…,mkm_{1},\dots,m_{k} are integers and a1,…,aka_{1},\dots,a_{k} are prescribed integers. Then, the system of congruences x≔a1(modm1)ā‹®x≔ak(modmk)\begin{align*} x&\equiv a_{1}\pmod{m_{1}}\\ &\vdots\\ x&\equiv a_{k}\pmod{m_{k}} \end{align*}has a unique solution(modM)\pmod{M} where MM is the least common multiple M=lcm(m1,…,mk)M=lcm(m_{1},\dots ,m_{k})if and only if gcd(mi,mj)∣aiāˆ’aj,āˆ€i=Ģøjgcd(m_{i},m_{j})|a_{i}-a_{j},\forall i\not=j.

Corollary

If m1,…,mkm_{1},\dots,m_{k} are mutually coprime, then Z/mZ≅Z/m1ZāŠ•ā‹ÆāŠ•Z/mkZ\mathbb{Z}/m\mathbb{Z}\cong\mathbb{Z}/m_{1}\mathbb{Z}\oplus\dots \oplus \mathbb{Z}/m_{k}\mathbb{Z}and (Z/mZ)āˆ—ā‰…(Z/m1Z)āˆ—āŠ—ā‹ÆāŠ—(Z/mkZ)āˆ—(\mathbb{Z}/m\mathbb{Z})^*\cong(\mathbb{Z}/m_{1}\mathbb{Z})^{*}\otimes \dots \otimes (\mathbb{Z}/m_{k}\mathbb{Z})^{*}