FIND ME ON

GitHub

LinkedIn

Jacobi Symbol

🌱

Definition
NumberTheory

Definition

Let bZb\in\mathbb{Z} and nNn\in\mathbb{N} odd. We factor nn as a unique product of prime powers: n=p1α1prαrn=p_{1}^{\alpha_{1}}\dots p_{r}^{\alpha_{r}}We define the Jacobi Symbol as a product of Legendre symbols via (bn):=(bp1)α1(bpr)αr\left( \frac{b}{n} \right):=\left( \frac{b}{p_{1}} \right)^{\alpha_{1}}\dots\left( \frac{b}{p_{r}} \right)^{\alpha_{r}}

Linked from