NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
🌱
Let b∈Zb\in\mathbb{Z}b∈Z and n∈Nn\in\mathbb{N}n∈N odd. We factor nnn as a unique product of prime powers: n=p1α1…prαrn=p_{1}^{\alpha_{1}}\dots p_{r}^{\alpha_{r}}n=p1α1…prαrWe define the Jacobi Symbol as a product of Legendre symbols via (bn):=(bp1)α1…(bpr)αr\left( \frac{b}{n} \right):=\left( \frac{b}{p_{1}} \right)^{\alpha_{1}}\dots\left( \frac{b}{p_{r}} \right)^{\alpha_{r}}(nb):=(p1b)α1…(prb)αr
Jacobi Prop 1