FIND ME ON

GitHub

LinkedIn

Legendre Symbol

🌱

Definition
NumberTheory

Definition

If pp is an odd prime, and aZa\in\mathbb{Z}, we define the Legendre Symbol, written as (ap)\left( \frac{a}{p} \right) by (ap)={0if pa1if a is a quadratic residue1if a is a non-residue\left( \frac{a}{p} \right)=\begin{cases} 0&\text{if }p|a \\ 1&\text{if }a\text{ is a quadratic residue} \\ -1 & \text{if }a\text{ is a non-residue} \end{cases} There should be no confusion with fractions here. The symbol represents aa over pp.

Remark

Note this equivalence a is a quadratic residue    x2a(modp) is solvablea\text{ is a quadratic residue}\iff x^{2}\equiv a\pmod{p}\text{ is solvable}

Linked from