NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
š±
The Legendre Symbol satisfies: 1. (ap)\left( \frac{a}{p} \right)(paā) depends only on the residue of a(modp)a\pmod{p}a(modp); 2. (abp)=(ap)(bp)\left( \frac{ab}{p} \right)=\left( \frac{a}{p} \right)\left( \frac{b}{p} \right)(pabā)=(paā)(pbā) 3. For any bbb coprime to ppp, we have (ab2p)=(ap)\left( \frac{ab^{2}}{p} \right)=\left( \frac{a}{p} \right)(pab2ā)=(paā) 4. (ā1p)=(ā1)pā12\left( \frac{-1}{p} \right)=(-1)^{\frac{p-1}{2}}(pā1ā)=(ā1)2pā1ā