FIND ME ON

GitHub

LinkedIn

Legendre Symbol Properties

🌱

Theorem
NumberTheory

Proposition

The Legendre Symbol satisfies: 1. (ap)\left( \frac{a}{p} \right) depends only on the residue of a(modp)a\pmod{p}; 2. (abp)=(ap)(bp)\left( \frac{ab}{p} \right)=\left( \frac{a}{p} \right)\left( \frac{b}{p} \right) 3. For any bb coprime to pp, we have (ab2p)=(ap)\left( \frac{ab^{2}}{p} \right)=\left( \frac{a}{p} \right) 4. (āˆ’1p)=(āˆ’1)pāˆ’12\left( \frac{-1}{p} \right)=(-1)^{\frac{p-1}{2}}