FIND ME ON

GitHub

LinkedIn

Average Code Rate

🌱

Definition
InfoTheory

Let C\mathcal{C} be a DD-ary nn-th order VLC f:Xn→{0,1,⋯ ,Dāˆ’1}āˆ—f:\mathcal{X}^{n}\to\{0,1,\cdots,D-1\}^*for a discrete source {Xi}i=1āˆž\{X_{i}\}^{\infty}_{i=1} with alphabet X\mathcal{X} and joint pmfs {pXn}\{p_{X^n}\} and let l(cxn)\mathscr{l}(c_{x^n}) denote the length of codeword cxn:=f(xn)c_{x_{n}}:=f(x^{n}) associated with source nn-tuple xn∈Xnx^{n}\in\mathcal{X}^{n}. Then the average codeword length for C\mathcal{C} is given by l‾:=E[l(cXn)]=āˆ‘xn∈XnpXn(xn)l(cxn)\overline{\mathscr{l}}:=E[\mathscr{l}(c_{X^n})]=\sum\limits_{x^{n}\in\mathcal{X}^{n}}p_{X^{n}}(x^{n})\mathscr{l}(c_{x^{n}})and its average code rate is given by R‾:=l‾n=1nāˆ‘xn∈XnpXn(xn)l(cxn)\overline R:= \frac{\overline{\mathscr{l}}}{n}= \frac{1}{n}\sum\limits_{x^{n}\in\mathcal{X}^{n}}p_{X^n}(x^{n})\mathscr{l}(c_{x^{n}})

Linked from