FIND ME ON

GitHub

LinkedIn

Joint Probability Mass Function

🌱

Probability

Definition

For 2 RVs

Let X,YX,Y be two discrete RVs defined on the same sample space SS of a random experiment and taking values in the sets X,Y\mathscr{X},\mathscr{Y}. Then the joint pmf of XX and YY is px,y(x,y):=P(X=x,Y=x)Ā ,Ā x∈X,Ā y∈Yp_{x,y}(x,y):=P(X=x,Y=x) \ , \ x\in\mathscr{X}, \ y\in\mathscr{Y} ## Proposition (Properties) 1. p(x,y)≄0Ā āˆ€x∈X,y∈Yp(x,y)\ge 0 \ \forall x\in\mathscr{X},y\in\mathscr{Y} 2. p(x,y)=0Ā āˆ€xāˆ‰X,yāˆ‰Yp(x,y)=0 \ \forall x\notin\mathscr{X},y\notin\mathscr{Y} 3. āˆ‘x∈Xāˆ‘y∈Yp(x,y)=1\sum_{x\in\mathscr{X}}\sum_{y\in\mathscr{Y}}p(x,y)=1 4. For AāŠ‚XƗYA\subset\mathscr{X}\times\mathscr{Y}, P((X,Y)∈A)=āˆ‘(x,y)∈Ap(x,y)P((X,Y)\in A)=\sum_{(x,y)\in A}p(x,y)

Linked from