Given (X,Y)ā¼pXYā on XĆY, the mutual information between X and Y, denoted by I(X;Y), is given by I(X;Y):ā=D(pXYāā„pXāpYā)=EpXYāā[log2ā(pXā(X)pYā(Y)pXYā(X,Y)ā)]=aāXāābāYāāpXYā(a,b)log2āpXā(a)pYā(b)pXYā(a,b)āā
1. Symmetry: I(X;Y)=I(Y;X) 2. Chain Rule: I(X;Y)ā=H(X)āH(Xā£Y)=H(Y)āH(Yā£X)=H(X)+H(Y)āH(X,Y)ā 3. Mutual Information of the same variable is Entropy: I(X;X)=H(X) 4. Nonnegativity: I(X;Y)ā„0 (with equality iff Xā„ā„Y) 5. LUB: I(X;Y)ā¤min{log2āā£Xā£,log2āā£Yā£}
Let (X,Y,Z)ā¼pXYZā on XĆYĆZ, the conditional mutual information between X and Y given Z is: I(X;Yā£Z):ā=D(pXYā£Zāā„pXā£ZāpYā£Zāā£pZā)=aāXāābāYāācāZāāpXYā£Zā(a,bā£c)pZā(c)log2āpXā£Zā(aā£c)Ā pYā£Zā(bā£c)pXYā£Zā(a,bā£c)ā=cāZāāpZā(c)aāXāābāYāāpXYā£Zā(a,bā£c)log2āpXā£Zā(aā£c)Ā pYā£Zā(bā£c)pXYā£Zā(a,bā£c)ā=Ezā¼PZāā[D(pXYā£zāā„pXā£zāpYā£zā)]ā
I(X;Yā£Z)ā=H(Xā£Z)āH(Xā£Z,Y)=H(Yā£Z)āH(Yā£Z,X)=H(Xā£Z)+H(Yā£Z)āH(X,Yā£Z)ā
Let random vector Xn and RV Y be jointly distributed with joint pmf pXnYā then I(Xn;Y)=i=1ānāI(Xiā;Yā£Xiā1)
1. Let Xā¼pXā and RV YāX^ has p(yā£x) such that E[d(X,Y)]ā¤D, then I(X;Y)ā„R(D) 2. Let Xā¼pXā and RV YāX^ then I(X;Y)ā„R(E[d(X,Y)])
Let X1ā,ā¦,Xnā be iid RVs. Then for any RVs X^1ā,ā¦,X^nā I(Xn;X^nā)ā„i=1ānāI(Xiā,X^iā)
Let (X,Y)ā¼fXYā with SXāāR2. Then the mutual information between X and Y is I(X;Y):ā=D(fXāā„fyā)=ā«SXāāfXYā(x,y)log2āfXā(x)fYā(y)fXYā(x,y)ādxdy=h(X)+h(Y)āh(X,y)=h(X)āh(Xā£Y)=h(Y)āh(Yā£X)ā
I(X1ā,āÆ.Xnā;Y)=i=1ānāI(Xiā;Yā£Xiā1ā,āÆ,X1ā)