NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
🌱
Let qnq^{n}qn be the KT coding distribution on Xn\mathcal{X}^{n}Xn, where ∣X∣=m|\mathcal{X}|=m∣X∣=m. Then for any pmf p(x)p(x)p(x) on X\mathcal{X}X and iid source distribution pn(xn)=∏i=1np(xi)p^{n}(x^{n})=\prod_{i=1}^{n}p(x_{i})pn(xn)=∏i=1np(xi) 1nD(pn∥qn)≤m−1logn2n+K0n, ∀n≥1\frac{1}{n}D(p^{n}\|q^{n})\le \frac{m-1\log n}{2n}+\frac{K_{0}}{n}, \ \ \forall n\ge1n1D(pn∥qn)≤2nm−1logn+nK0, ∀n≥1for some constant K0K_{0}K0.