FIND ME ON

GitHub

LinkedIn

Krichevsky and Trofimov Coding Distribution

🌱

Theorem
InfoTheory

For all 1≤t≤n1\le t\le n define q(i∣xtāˆ’1)=n(i∣xtāˆ’1)+12tāˆ’1+m2q(i|x^{t-1})= \frac{n(i|x^{t-1})+\frac{1}{2}}{t-1+\frac{m}{2}}Then 1. q(i∣xtāˆ’1)q(i|x^{t-1}) is a conditional pmf on X\mathcal{X} given xtāˆ’1x^{t-1} 2. āˆt=1nq(xt∣xtāˆ’1)=āˆi=1māˆj=1n(i∣xn)(n(i∣xn)+12āˆ’j)āˆj=1n(n+m2āˆ’j)=q(xn)\prod_{t=1}^{n}q(x_{t}|x^{t-1})= \frac{\prod_{i=1}^{m}\prod_{j=1}^{n(i|x^{n})}\left( n(i|x^{n})+ \frac{1}{2} -j \right)}{\prod_{j=1}^{n}\left( n+\frac{m}{2}- j \right)}=q(x^{n})

Linked from