NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
š±
For all 1ā¤tā¤n1\le t\le n1ā¤tā¤n define q(iā£xtā1)=n(iā£xtā1)+12tā1+m2q(i|x^{t-1})= \frac{n(i|x^{t-1})+\frac{1}{2}}{t-1+\frac{m}{2}}q(iā£xtā1)=tā1+2mān(iā£xtā1)+21āāThen 1. q(iā£xtā1)q(i|x^{t-1})q(iā£xtā1) is a conditional pmf on X\mathcal{X}X given xtā1x^{t-1}xtā1 2. āt=1nq(xtā£xtā1)=āi=1māj=1n(iā£xn)(n(iā£xn)+12āj)āj=1n(n+m2āj)=q(xn)\prod_{t=1}^{n}q(x_{t}|x^{t-1})= \frac{\prod_{i=1}^{m}\prod_{j=1}^{n(i|x^{n})}\left( n(i|x^{n})+ \frac{1}{2} -j \right)}{\prod_{j=1}^{n}\left( n+\frac{m}{2}- j \right)}=q(x^{n})t=1ānāq(xtāā£xtā1)=āj=1nā(n+2māāj)āi=1māāj=1n(iā£xn)ā(n(iā£xn)+21āāj)ā=q(xn)
Divergence Bound on KT
Max Redundancy on KT