FIND ME ON

GitHub

LinkedIn

Average Probability of Error (Channel Code)

🌱

Definition
InfoTheory

Given a (n,M)(n,M) code Cn\mathcal{C}_{n}, its average probability of error is given by Pe(Cn):=P(W^W)=w=1MP(W=w)P(g(ynwW=w))=1Mw=1Mλw(Cn)\begin{align*} P_e(\mathcal{C}_n):&=P(\hat W\not=W)\\ &=\sum\limits_{w=1}^{M}P(W=w)P(g(y^{n}\not=w|W=w))\\ &=\frac{1}{M}\sum\limits^{M}_{w=1}\lambda_{w}(\mathcal{C}_{n}) \end{align*}where λw(Cn):=P(g(yn)wW=w))=P(g(yn)wXn=f(w))=ynYn:g(ynw)PYnXn(ynxn)\begin{align*} \lambda_{w}(\mathcal{C}_{n}):&=P(g(y^{n})\not=w|W=w))\\ &=P(g(y^{n})\not=w|X^{n}=f(w))\\ &=\sum\limits_{y^{n}\in\mathcal{Y}^{n}:g(y^{n}\not=w)}P_{Y^{n}|X^{n}}(y^{n}|x^{n}) \end{align*}is the code’s conditional probability of decoding error given that the message ww is sent over the channel.