FIND ME ON

GitHub

LinkedIn

Fixed-Length Codes for Discrete Channels

🌱

Definition
InfoTheory

Given positive integers nn and MM, an (n,M)(n,M) fixed-length code for a discrete channel (X,Y,{PYnXn}n=1)(\mathcal{X},\mathcal{Y}, \{P_{Y^{n}|X^{n}}\}_{n=1}^{\infty}) with code length nn and rate Rn:=1nlog2MR_{n}:=\frac{1}{n}\log_{2}M message bits/channel use consists of: - a message set M={1,,M}\mathcal{M}=\{1,\cdots,M\} intended for transmission - an encoding function f:MXnf:\mathcal{M}\to\mathcal{X}^{n}yielding codewords f(1),,f(M)Xnf(1),\cdots,f(M)\in\mathcal{X}^{n} of length nn. The set of codewords is called the codebook, written as Cn={f(1),,f(M)}\mathcal{C}_{n}=\{f(1),\cdots,f(M)\} - a decoding function g:YnMg:\mathcal{Y}^{n}\to\mathcal{M}

Linked from