A discrete communication channel (with memory) is a triplet (X,Y,{PYn∣Xn}n=1∞)with - a finite input alphabet X - a finite output alphabet Y - a sequence of n-dimensional transition distributions PYn∣Xn(bn∣an)=P(Yn=bn∣Xn=an), n≥1, an∈Xn, bn∈Yn ## Assumption We assume that the channel’s n-dimensional distribution is consistent (i.e. we can obtain the i-dimensional conditional distribution by marginalizing the i+1th conditional distribution): PYn∣Xn(bn∣an)=pXi(ai)pXiYi(ai,bi)=pXi(ai)ai+1∈X∑bi+1∈Y∑pXi+1Yi+1(ai+1,bi+1)=ai+1∈X∑bi+1∈Y∑pXi+1∣Xi(ai+1∣ai)pYi+1∣Xi+1(bi+1∣ai+1)∀i≥1, ai∈Xi, bi∈Yi, pXi+1∣Xi.