FIND ME ON

GitHub

LinkedIn

Discrete Communication Channel

🌱

Definition

A discrete communication channel (with memory) is a triplet (X,Y,{PYnXn}n=1)(\mathcal{X}, \mathcal{Y}, \{P_{Y^{n}|X^{n}}\}_{n=1}^\infty)with - a finite input alphabet X\mathcal{X} - a finite output alphabet Y\mathcal{Y} - a sequence of nn-dimensional transition distributions PYnXn(bnan)=P(Yn=bnXn=an), n1, anXn, bnYnP_{Y^{n}|X^{n}}(b^{n}|a^{n})=P(Y^{n}=b^{n}|X^{n}=a^{n}), \ n\ge1, \ a^{n}\in\mathcal{X}^{n}, \ b^{n}\in\mathcal{Y}^{n} ## Assumption We assume that the channel’s nn-dimensional distribution is consistent (i.e. we can obtain the ii-dimensional conditional distribution by marginalizing the i+1i+1th conditional distribution): PYnXn(bnan)=pXiYi(ai,bi)pXi(ai)=ai+1Xbi+1YpXi+1Yi+1(ai+1,bi+1)pXi(ai)=ai+1Xbi+1YpXi+1Xi(ai+1ai)pYi+1Xi+1(bi+1ai+1)\begin{align*} P_{Y^{n}|X^{n}}(b^{n}|a^{n})= \frac{p_{X^{i}Y^{i}}(a^{i},b^{i})}{p_{X^{i}}(a^{i})}&=\frac{\sum\limits_{a_{i+1}\in\mathcal{X}}\sum\limits_{b_{i+1}\in\mathcal{Y}}p_{X^{i+1}Y^{i+1}}(a^{i+1},b^{i+1})}{p_{X^{i}}(a^{i})}\\\\ &=\sum\limits_{a_{i+1}\in\mathcal{X}}\sum\limits_{b_{i+1}\in\mathcal{Y}}p_{X_{i+1}|X^{i}}(a_{i+1}|a^{i})p_{Y^{i+1}|X^{i+1}}(b^{i+1}|a^{i+1}) \end{align*}i1, aiXi, biYi, pXi+1Xi\forall i\ge1, \ a^i\in\mathcal{X}^i, \ b^i\in\mathcal{Y}^i, \ p_{X_{i+1}|X^{i}}.

Linked from