FIND ME ON

GitHub

LinkedIn

Discrete Memoryless Channel

🌱

Definition
InfoTheory

A discrete memoryless channel (DMC) is a discrete channel whose sequence of nn-dimensional transition distributions {PYnXn}\{P_{Y^{n}|X^{n}}\} satisfies PYnXn(bnan)=Πi=1PYX(biai)(**)\tag{**}P_{Y^{n}|X^{n}}(b^{n}|a^{n})=\Pi_{i=1}^{\infty}P_{Y|X}(b_{i}|a_{i})n1, anXn, bnYn\forall n\ge1, \ a^{n}\in\mathcal{X}^{n}, \ b^{n}\in \mathcal{Y}^{n} where PYXP_{Y|X} is a fixed (time-invariant) conditional distribution on X×Y\mathcal{X}\times\mathcal{Y}. In other words, a DMC is fully described by the triplet (X,Y,Q=[PXY])(\mathcal{X},\mathcal{Y},Q=[P_{XY}]) where QQ is called the channel’s transition matrix and PXY:=PYX(yx), xX, yYP_{XY}:=P_{Y|X}(y|x), \ x\in\mathcal{X}, \ y\in\mathcal{Y}.

- Matrix is row-stochastic (i.e. rows sum to one) - It can be verified that a DMC satisfies the consistency property

The DMC Property ()(**) is equivalent to these two conditions: 1. Output Memoryless Feature: PYnXn,Yn1(bnan,bn1)=PYX(bnan)P_{Y_{n}|X^{n},Y^{n-1}}(b_{n}|a^{n},b^{n-1})=P_{Y|X}(b_{n}|a_{n}) n1, anXn, bnYn\forall n\ge1, \ a^{n}\in\mathcal{X}^{n}, \ b^{n}\in \mathcal{Y}^{n}. i.e. The current output is conditionally independent of past output given the current input. 2. Non-Anticipatory Feature: PYn1Xn(bn1an)=PYn1Xn1(bn1an1)P_{Y^{n-1}|X^{n}}(b^{n-1}|a^{n})=P_{Y^{n-1}|X^{n-1}}(b^{n-1}|a^{n-1}) n2, anXn, bn1Yn1\forall n\ge2, \ a^{n}\in\mathcal{X}^{n}, \ b^{n-1}\in \mathcal{Y}^{n-1}. i.e. The current output is conditionally independent of future input given the current and past inputs.

Linked from