FIND ME ON

GitHub

LinkedIn

Symmetric Channel

🌱

Definition
InfoTheory

A DMC (X,Y,Q=[PXY])(\mathcal{X},\mathcal{Y},Q=[P_{XY}]) is called symmetric if the rows of QQ are permutations of each other and the columns of QQ are permutations of each other

A DMC (X,Y,Q=[PXY])(\mathcal{X},\mathcal{Y},Q=[P_{XY}]) is called weakly symmetric if the rows of QQ are permutations of each other and the column sums in QQ are equal i.e. aXPYX(ba)=c \mbox(constant),bY\sum\limits_{a\in\mathcal{X}}P_{Y|X}(b|a)=c \ \mbox{(constant), }\forall b\in \mathcal{Y}

For a DMC (X,Y,Q=[PXY])(\mathcal{X},\mathcal{Y},Q=[P_{XY}]), its information capacity, CC, is achieved by a uniform input distribution (i.e., pX(a)=1X, aXp_{X}(a)= \frac{1}{|\mathcal{X}|}, \ \forall a\in\mathcal{X}) and is given by C=log2YH(q1,,qY) \mbox(inbits)C=\log_{2}|\mathcal{Y}|-H(q_{1},\cdots,q_{|\mathcal{Y}|}) \ \mbox{(in bits)}where (q1,,qY)(q_{1},\cdots,q_{|\mathcal{Y}|}) is any row from QQ.

A DMC (X,Y,Q=[PXY])(\mathcal{X},\mathcal{Y},Q=[P_{XY}]), called quasi-symmetric if QQ can be partitioned along its columns into mm weakly symmetric sub-matrices Q1,,QmQ_{1},\cdots, Q_{m} for some integer m1m\ge1, where each sub-matrix QiQ_{i} has size X×Yi|\mathcal{X}|\times|\mathcal{Y}_{i}|, i=1,,mi=1,\cdots,m, with Y1Ym=Y\mathcal{Y}_{1}\cup\cdots\cup\mathcal{Y}_{m}=\mathcal{Y} and YiYj= ij\mathcal{Y}_{i}\cap\mathcal{Y}_{j}=\emptyset \ \forall i\not=j

For a DMC (X,Y,Q=[PXY])(\mathcal{X},\mathcal{Y},Q=[P_{XY}]), its information capacity, CC, is achieved by a uniform input distribution and is given by C=i=1maiCiC=\sum\limits_{i=1}^{m}a_{i}C_{i}where ai=yYipXY=\mboxsumofanyrowinQia_{i}=\sum\limits_{y\in\mathcal{Y}_{i}}p_{XY}=\mbox{sum of any row in }Q_{i}and Ci=log2YiH(\mboxanyrowinmatrix1aiQi), i=1,,mC_{i}=\log_{2}|\mathcal{Y}_{i}|-H(\mbox{any row in matrix } \frac{1}{a_{i}}Q_{i}), \ i=1,\cdots,m

Linked from