FIND ME ON

GitHub

LinkedIn

Binary Erasure Channel

🌱

Definition
InfoTheory

a DMC with alphabets X={0,1}\mathcal{X}=\{0,1\}, Y={0,E,1}\mathcal{Y}=\{0,E,1\}. In the BSC, bits are received either perfectly or corrupted. Here we can also lose bits, (we know the location of the lost bits but not their value), these are denoted using EE. We define the transition probability as PYX(ba)={1α\mboxifa=b,b{0,1}0\mboxifab,a,b{0,1}αb=E,a{0,1}P_{Y|X}(b|a)=\begin{cases}1-\alpha&\mbox{if }a=b,b\in\{0,1\}\\0&\mbox{if }a\not=b,a,b\in\{0,1\}\\\alpha&b=E,a\in\{0,1\}\end{cases}where 0α10\le\alpha\le1 is the channel’s erasure probability. The transition matrix is defined as Q=[PXY]=[PYX(00)PYX(E0)PYX(10)PYX(01)PYX(E1)PYX(11)]=[1αα00α1α]Q=[P_{XY}]=\begin{bmatrix}P_{Y|X}(0|0)&P_{Y|X}(E|0)&P_{Y|X}(1|0)\\P_{Y|X}(0|1)&P_{Y|X}(E|1)&P_{Y|X}(1|1)\end{bmatrix}=\begin{bmatrix}1-\alpha&\alpha&0\\0&\alpha&1-\alpha\end{bmatrix} ## Information Capacity The information capacity of the BSEC(ϵ,α)(\epsilon,\alpha) can be found using Information Capacity of Quasi-Symmetric Channels where we find that it evaluates to C=1αC=1-\alpha

Linked from