FIND ME ON

GitHub

LinkedIn

Binary Symmetric Channel

🌱

Definition
InfoTheory

This is a Discrete Memoryless Channel with X=Y={0,1}\mathcal{X}=\mathcal{Y}=\{0,1\} and PYX(ba)={ϵ\mboxifab1ϵ\mboxifa=b  a,b{0,1}P_{Y|X}(b|a)=\begin{cases}\epsilon&\mbox{if }a\not=b\\1-\epsilon&\mbox{if }a=b\end{cases} \ \ a,b\in\{0,1\}where 0ϵ10\le\epsilon\le1 is called the channel’s crossover probability or bit error rate. The transition matrix QQ is defined as Q=[PXY]=[PYX(00)PYX(10)PYX(01)PYX(11)]=[1ϵϵϵ1ϵ]Q=[P_{XY}]=\begin{bmatrix}P_{Y|X}(0|0)&P_{Y|X}(1|0)\\P_{Y|X}(0|1)&P_{Y|X}(1|1)\end{bmatrix}=\begin{bmatrix}1-\epsilon&\epsilon\\\epsilon&1-\epsilon\end{bmatrix} ## Information Capacity The information capacity of the BSEC(ϵ,α)(\epsilon,\alpha) can be found using Information Capacity of Weakly Symmetric Channels where we find that it evaluates to C=1hb(ϵ)C=1-h_{b}\left(\epsilon\right)

Linked from