FIND ME ON

GitHub

LinkedIn

Binary Symmetric Erasure Channel

🌱

Definition
InfoTheory

With alphabet X={0,1}\mathcal{X}=\{0,1\} and Y={0,E,1}\mathcal{Y}=\{0,E,1\} with PYX(ba)={1αϵ\mboxifa=b,b{0,1}ϵ\mboxifab,a,b{0,1}α\mboxifb=E,a{0,1}P_{Y|X}(b|a)=\begin{cases}1-\alpha-\epsilon&\mbox{if }a=b,b\in\{0,1\}\\\epsilon&\mbox{if }a\not=b,a,b\in\{0,1\}\\\alpha&\mbox{if }b=E,a\in\{0,1\}\end{cases}where ϵ\epsilon and α\alpha are the crossover and erasure probabilities. The transition matrix is Q=[PXY]=[PYX(00)PYX(E0)PYX(10)PYX(01)PYX(E1)PYX(11)]=[1αϵαϵϵα1αϵ]Q=[P_{XY}]=\begin{bmatrix}P_{Y|X}(0|0)&P_{Y|X}(E|0)&P_{Y|X}(1|0)\\P_{Y|X}(0|1)&P_{Y|X}(E|1)&P_{Y|X}(1|1)\end{bmatrix}=\begin{bmatrix}1-\alpha-\epsilon&\alpha&\epsilon\\\epsilon&\alpha&1-\alpha-\epsilon\end{bmatrix}

The BSEC(ϵ,α)(\epsilon,\alpha) can be explicitly modeled via a binary-input channel with an iid noise-erasure process {Zi}i=1\{Z_{i}\}_{i=1}^{\infty} with alphabet Z={0,E,1}\mathcal{Z}=\{0,E,1\} and pZ(1)=ϵp_{Z}(1)=\epsilon and pZ(E)=αp_{Z}(E)=\alpha.

Special Cases

For BSEC(ϵ,α)(\epsilon,\alpha) - α=0    \alpha=0\implies BSC(ϵ)(\epsilon) - ϵ=0    \epsilon=0\implies BEC(α)(\alpha)

Information Capacity

The information capacity of the BSEC(ϵ,α)(\epsilon,\alpha) can be found using Information Capacity of Quasi-Symmetric Channels where we find that it evaluates to C=(1α)[1hb(ϵ1α)]C=(1-\alpha)\left[1-h_{b}\left(\frac{\epsilon}{1-\alpha}\right)\right]