Given positive integers n and M=Mn, a block (fixed-length) code Cn=(n,M) for a AWGN Channel with - Average Power Constraint: P - Codeword Length: n - Number of Codewords: M - Rate: n1log2M (bits per channel symbol) - Message Set: M={1,2,…,M} of M information messages intended for transmission (note: messages are uniformly distributed over M) - Encoding Function: f:M→Rnyielding codewords c1=f(1),…,cM=f(M) such that each codeword cm=(cm1,…,cmn) of length n satisfies the average power constraint P n1i=1∑ncmi2≤P, m=1,…,M - Decoding function g:Rn→M
Pe(Cn)=M1m=1∑Mλm(Cn)where λm(Cn)=P(g(Yn)=m∣Xn=cm)=∫yn∈Rn: g(yn)=mfYn∣Xn(yn∣cm)dynis the conditional error probability given that message m∈M is sent over the channel (via codeword cm=f(m)∈Rn).