FIND ME ON

GitHub

LinkedIn

Transform Coding with Scalar Quantization

🌱

Definition
InfoTheory

Definition

Pasted image 20240321123912.png - Let A\mathbf{A} be a kƗkk\times k orthogonal matrix. - X=(X1,…,Xk)T\mathbf{X}=(X_{1},\dots,X_{k})^{T} be a random vector representing our input and - AX=Y=(Y1,…,Yk)T\mathbf{AX}=\mathbf{Y}=(Y_{1},\dots,Y_{k})^{T} represent the transform coefficients. - For i=1,…,ki=1,\dots,k we define QiQ_{i} as a NiN_{i}-level scalar quantizer. - Finally, the quantized coefficients are defined as Y^=(Q1(Y1),…,Qk(Yk))T\mathbf{\hat{Y}}=(Q_{1}(Y_{1}),\dots,Q_{k}(Y_{k}))^{T} and; - Our quantized output is Aāˆ’1Y^=X^=(X^1,…,X^k)T\mathbf{A}^{-1}\mathbf{\hat{Y}}=\mathbf{\hat{X}}=(\hat{X}_{1},\dots,\hat{X}_{k})^{T}

The end-to-end MSE distortion in transform coding is defined as Dtc=āˆ‘i=1kE[(Xiāˆ’X^i)2]=E[∄Xāˆ’X^∄2]D_{\text{tc}}=\sum_{i=1}^{k}E[(X_{i}-\hat{X}_{i})^{2}]=E[\lVert \mathbf{X}-\mathbf{\hat{X}} \rVert ^{2}]

Linked from