FIND ME ON

GitHub

LinkedIn

Centroid Condition

🌱

Theorem
InfoTheory

Theorem

Consider all NN-level scalar quantizers with a given partition {R1,,RN}\{ R_{1},\dots,R_{N} \}. Among these, the quantizer QQ with output levels yi=argminyR E[d(X,y)XRi], i=1,,Ny_{i}=\underset{y\in\mathbb{R}}{\arg\min} \ E[d(X,y)|X\in R_{i}], \ i=1,\dots,Nhas minimum distortion.

Theorem (Vector)

Consider all NN-point vector quantizers with a given partition {R1,,RN}\{ R_{1},\dots,R_{N} \}. Among these, the quantizer QQ with output levels ci=argmincRk E[d(X,c)XRi], i=1,,N\mathbf{c}_{i}=\underset{\mathbf{c}\in\mathbb{R}^{k}}{\arg\min} \ E[d(\mathbf{X},\mathbf{c})|\mathbf{X}\in R_{i}], \ i=1,\dots,Nhas minimum distortion.

Intuition

Here we update each centroid, or each yiy_{i} by finding the yRy\in\mathbb{R} that creates minimum average distance of each xRix\in R_{i}.

Linked from