FIND ME ON

GitHub

LinkedIn

Vector Quantizer

🌱

Definition
InfoTheory

A kk-dimensional NN-point vector quantizer (VQ) is a mapping Q:Rk→CQ:\mathbb{R}^{k}\to \mathcal{C} where C={c1,…,cN}āŠ‚Rk\mathcal{C}=\{ \mathbf{c}_{1},\dots,\mathbf{c}_{N} \}\subset \mathbb{R}^{k} - C\mathcal{C} is called the codebook - c1,…,cN\mathbf{c}_{1},\dots,\mathbf{c}_{N} are the reproduction points - Ri={x:Q(x)=ci},i=1,…,NR_{i}=\{ \mathbf{x}:Q(\mathbf{x})=\mathbf{c}_{i} \},\quad i=1,\dots,N are the quantizer cells which form a partition of Rk\mathbb{R}^{k}

For a random vector X=(X1,…,Xk)T\mathbf{X}=(X_{1},\dots,X_{k})^{T}, the distortion of QQ is D(Q)=āˆ‘j=1N∫Rjd(x,cj)f(x) dxD(Q)=\sum_{j=1}^{N}\int\limits _{R_{j}}d(\mathbf{x},\mathbf{c}_{j})f(\mathbf{x}) \, d\mathbf{x}

The weighted squared error is a distortion measure s.t. d(x,y)=(xāˆ’y)TW(xāˆ’y)d(\mathbf{x},\mathbf{y})=(\mathbf{x}-\mathbf{y})^{T}\mathbf{W}(\mathbf{x}-\mathbf{y})where W\mathbf{W} is symmetric and positive definite kƗkk\times k matrix.

Linked from