FIND ME ON

GitHub

LinkedIn

Nearest Neighbour Condition

🌱

Theorem
InfoTheory

Consider all NN-level scalar quantizers with codebook C={y1,,yN}\mathcal{C}=\{ y_{1},\dots,y_{N} \}. Among these, any quantizer with quantizer cells satisfying Ri={x:d(x,yi)d(x,yj), j=1,,N}  i=1,,N(*)\tag{*}R_{i}=\{ x:d(x,y_{i})\le d(x,y_{j}), \ j=1,\dots,N \} \ \ i=1,\dots,Nhas minimum distortion.

Consider all NN-level vector quantizers with codebook C={c1,,cN}\mathcal{C}=\{ \mathbf{c}_{1},\dots,\mathbf{c}_{N} \}. Among these, any quantizer with quantizer cells satisfying Ri={x:d(x,ci)d(x,xj), j=1,,N}  i=1,,N(*)\tag{*}R_{i}=\{ \mathbf{x}:d(\mathbf{x},\mathbf{c}_{i})\le d(\mathbf{x},\mathbf{x}_{j}), \ j=1,\dots,N \} \ \ i=1,\dots,Nhas minimum distortion.

Intuition

This idea is pretty straightforward, for each xjx_{j} to the closest yiy_{i} and put it in that RiR_{i}. >[!cor] >QQ with codebook C\mathcal{C} satisfies (*) if and only if xR\forall x\in\mathbb{R} Q(x)=yi    d(x,yi)d(x,yj) jQ(x)=y_{i}\implies d(x,y_{i})\le d(x,y_{j}) \ \forall jor equivalently xR\forall x\in\mathbb{R} d(x,Q(x))=minyjCd(x,yj)d(x,Q(x))=\min_{y_{j}\in\mathcal{C}}d(x,y_{j})or Q(x)=arg minyjC d(x,yj)Q(x)=\underset{y_{j}\in\mathcal{C}}{\mathrm{arg \ min}} \ d(x,y_{j})

Linked from