FIND ME ON

GitHub

LinkedIn

Lattice Vector Quantizer

🌱

Definition
InfoTheory

A lattice vector quantizer is a NNVQ QΛQ_{\Lambda} with codebook Λ\Lambda. - Encoding rule: QΛ(x)=argminyΛ xyQ_{\Lambda}(\mathbf{x})=\underset{\mathbf{y}\in\Lambda}{\arg\min}\ \lVert \mathbf{x}-\mathbf{y} \rVert - Quantizer Cell for yi\mathbf{y}_{i}: Ri={xRk:xyixyj, yjΛ}R_{i}=\{ \mathbf{x}\in\mathbb{R}^{k}:\lVert \mathbf{x}-\mathbf{y}_{i} \rVert \le \lVert \mathbf{x}-\mathbf{y}_{j} \rVert , \ \mathbf{y}_{j}\in\Lambda \}

Assume MSE and Xf\mathbf{X}\sim f. Then the distortion of a LVQ QΛQ_{\Lambda} can be expressed as D(QΛ)=iRixyi2f(x)dxD(Q_{\Lambda})=\sum_{i}\int\limits _{R_{i}}\lVert \mathbf{x}-\mathbf{y}_{i} \rVert ^{2}f(\mathbf{x}) \, d\mathbf{x}

Linked from