FIND ME ON

GitHub

LinkedIn

Lattice

🌱

Definition
InfoTheory

Let {u1,,uk}\{ \mathbf{u}_{1},\dots,\mathbf{u}_{k} \} be linearly independent vectors in Rk\mathbb{R}^{k}. A kk-dimensional lattice with basis {u1,,uk}\{ \mathbf{u}_{1},\dots,\mathbf{u}_{k} \} is the infinite discrete set Λ={yRk:y=i=1kniui, n1,,nkZ}\Lambda=\left\{ \mathbf{y}\in\mathbb{R}^{k}:\mathbf{y}=\sum_{i=1}^{k}n_{i}\,\mathbf{u}_{i},\ n_{1},\dots,n_{k}\in\mathbb{Z} \right\}i.e. Λ\Lambda is the collection of integer-coefficient linear combinations of the basis vectors.

- k=1k=1: Integer lattice Λ=Z={0,±1,±2,}\Lambda=\mathbb{Z}=\{0, \pm 1,\pm 2,\dots \} - k=2k=2: - 2D integer lattice Z2\mathbb{Z}^{2}: u1=(1,0)T\mathbf{u}_{1}=(1,0)^{T}, u2=(0,1)T\mathbf{u}_{2}=(0,1)^{T} - Hexagonal lattice: u1=(1,0)T\mathbf{u}_{1}=(1,0)^{T}, u2=(12,32)T\mathbf{u}_{2}=\left( - \frac{1}{2}, \frac{\sqrt{ 3 }}{2} \right)^{T}

Linked from