FIND ME ON

GitHub

LinkedIn

Convex Polytope

🌱

Definition
InfoTheory

A half-space in Rk\mathbb{R}^{k} is a set of the form H(u,β)={xRk:uTx+β0}H(\mathbf{u},\beta)=\{ \mathbf{x}\in\mathbb{R}^{k}:\mathbf{u}^{T}\mathbf{x}+\beta\ge 0 \}where uRk (u0)\mathbf{u}\in\mathbb{R}^{k} \ (\mathbf{u}\not=0) and βR\beta\in\mathbb{R}.

Intuition

Take some space and cut it in two

A hyperplane Λ(u,β)\Lambda(\mathbf{u},\beta) is the boundary of the H(u,β)H(\mathbf{u},\beta) i.e. Λ(u,β)={x:uTx+β=0}\Lambda(\mathbf{u},\beta)=\{ \mathbf{x}:\mathbf{u}^{T}\mathbf{x}+\beta=0 \} ## Intuition The this is the divider for the half-space

A set RRkR\subset\mathbb{R}^{k} is a convex polytope if it can be written as a finite intersection of s i.e. R=i=1LH(ui,βi)R=\bigcap_{i=1}^{L}H(\mathbf{u}_{i},\beta_{i})for some u1,,uLRk\mathbf{u}_{1},\dots,\mathbf{u}_{L}\in\mathbb{R}^{k} and β1,,βLR\beta_{1},\dots,\beta_{L}\in\mathbb{R}. ## Intuition Everything within the convex polytope and on the boundary is inside the space. Hence this convex polytope forms an additive group.

A convex polytope is a convex subset of Rk\mathbb{R}^{k}.

Pasted image 20240402145149.png

Linked from