FIND ME ON

GitHub

LinkedIn

Chebyshev Inequality

🌱

Theorem
Probability

For XL2X\in \mathscr{L}^{2}: P(Xμα)Var(X)α2\mathbb{P}(|X-\mu|\ge \alpha)\le \frac{\text{Var}(X)}{\alpha^{2}}for all α0\alpha\ge 0.

\begin{proof} P(Xμα)=P(Xμ2α2)E[Xμ2]α2\mathbb{P}(|X-\mu|\ge\alpha)=\mathbb{P}(|X-\mu|^{2}\ge\alpha^{2})\le \frac{\mathbb{E}[|X-\mu|^{2}]}{\alpha^{2}} with the inequality being an application of Markov’s Inequality. \end{proof}

Linked from