Let Z be a integrable random variable. Then for any ϵ>0, P(Z≥ϵ)≤ϵE[Z]
\begin{proof} Define the event E={X≥α}={ω∈Ω:X(ω)≥α}. Then X≥α1Ewhere if ω∈E then {X(ω)≥αα1E(ω)=α⟹X(ω)≥α1E(ω)and if ω∈E then {0≤X(ω)<αα1E(ω)=0⟹X(ω)≥α1E(ω)hence E[X]≥αE[1E]⟺αE[X]≥P(X≥α) \end{proof}