Let (Anā)nāNā be an increasing events (AnāāA) or decreasing events (AnāāA). Then nāālimāP(Anā)=P(A)
\begin{proof} Since AnāāAn+1ā and A=ānāAnā then we define Bnā such that: - B1ā=A1ā - B2ā=A2āāA1ā - B3ā=A3āāA2ā - ⦠Then A=jāāBjāand hence P(A)=P(jāāBjā)=jāāP(Bjā)=nāālimāj=1ānāP(Bjā)=nāālimāP(Anā)same logic holds for decreasing events but with complements involved. \end{proof} ## Remark Simply a by-product of Measure.