FIND ME ON

GitHub

LinkedIn

Limits of Events

🌱

Definition
ProbabilityStochasticProcesses

For a sequence of events An,nNA_n,n\in\mathbb{N} lim supnAn:=n=1i=nAi={Ai i.o.}\limsup_{n\to\infty}A_n:=\bigcap_{n=1}^\infty \bigcup_{i=n}^\infty A_i=\{ A_{i}\text{ i.o.} \}

For a sequence of events (An)nN(A_{n})_{n\in \mathbb{N}}: lim infnAn=n=1i=nAi={Ai a.a.}\liminf_{n\to \infty}A_{n}=\bigcup_{n=1}^{\infty}\bigcap_{i=n}^{\infty}A_{i}=\{ A_{i}\text{ a.a.} \}

lim supnAn={ωΩ:ωAi for infinitely many i}lim infnAn={ωΩ:ωAi, i except finitely many}\begin{align*} \limsup_{n\to\infty}A_{n}&=\{\omega\in\Omega: \omega\in A_i \text{ for infinitely many }i\}\\ \liminf_{ n \to \infty } A_{n}&= \{ \omega \in\Omega:\omega \in A_{i},\ \forall i \text{ except finitely many} \} \end{align*}

P(lim infnAn)lim infnP(An)lim supnP(An)P(lim supnAn)\mathbb{P}\left(\liminf_{ n \to \infty } A_{n}\right)\le \liminf_{ n \to \infty } \mathbb{P}(A_{n})\le \limsup_{ n \to \infty } \mathbb{P}(A_{n})\le \mathbb{P}\left(\limsup_{ n \to \infty } A_{n}\right)

\begin{proof} The middle inequality holds by definition so we prove only the first inequality since the last holds using the same logic.

First recall that lim infnAn=n1knAk\liminf_{ n \to \infty }A_{n}=\bigcup_{n\ge 1} \bigcap_{k\ge n} A_{k} Then note that knAk\bigcap_{k\ge n}A_{k} is a sequence of increasing events in nn to lim infnAn\liminf_{ n \to \infty }A_{n}, hence by Continuity of Probability we have P(lim infnAn)=P(nknAk)=limnP(knAk)=lim infnP(knAk)\mathbb{P}\left(\liminf_{ n \to \infty } A_{n}\right)=\mathbb{P}\left( \bigcup_{n}\bigcap_{k\ge n}A_{k} \right)=\lim_{ n \to \infty } \mathbb{P}\left( \bigcap_{k\ge n} A_{k} \right)=\liminf_{ n \to \infty } \mathbb{P}\left( \bigcap_{k\ge n}A_{k} \right)and since AnknAkA_{n}\supseteq\bigcap_{k\ge n}A_{k}, by Probability Measure we have lim infnP(knAk)lim infnP(An).\liminf_{ n \to \infty } \mathbb{P}\left( \bigcap_{k\ge n} A_{k}\right)\le\liminf_{ n \to \infty } \mathbb{P}(A_{n}).

\end{proof} ## Remark The Limits of Events is useful for characterizing “rare events” in a stochastic process or for understanding the long-term behavior of random systems.

In simpler terms, it can answer questions like, “Given a random process, what can we say will eventually happen with certainty?” This is crucial for understanding phenomena where we’re not just interested in immediate or short-term randomness but also in the behavior of the system over an extended period.

Linked from