FIND ME ON

GitHub

LinkedIn

Doob's Optional Sampling Theorem

🌱

Definition
StochasticDiffsStochasticControlStochasticProcesses

Let (Xn,Fn)(X_{n},\mathcal{F}_{n}) be a martingale sequence and let S,TS,T be stopping times with respect to the Filtration, FnX\mathcal{F}_{n}^{X} and let nNn\in\mathbb{N} such that STnS\le T\le n then 1. Integrable: XT,XSL1(Ω,F,P)X_{T},X_{S}\in\mathscr{L}^{1}(\Omega,\mathcal{F},P) 2. Martingale Property: E[XTFS]=XS a.s.E[X_{T}|\mathcal{F}_{S}]=X_{S}\text{ a.s.}

Let (Xn)nN(X_{n})_{n\in\mathbb{N}} be a (Fn)nN(\mathcal{F}_{n})_{n\in\mathbb{N}}-martingale (resp. sub, resp. super) and let S,TS,T be bounded stopping times where STS\le T then E[XS]=E[XT] (,)E[X_{S}]=E[X_{T}] \ (\le,\ge)

Let (Xt)t0(X_{t})_{t\ge 0} be a right continuous (Ft)t0(\mathcal{F}_{t})_{t\ge 0}-martingale. Let S,TS,T be stopping times and STNS\le T\le N for some NNN\in\mathbb{N} then 1. Integrable: XT,XSL1(Ω,F,P)X_{T},X_{S}\in\mathscr{L}^{1}(\Omega,\mathcal{F},P) 2. Martingale Property: E[XTFS]=XS a.s.E[X_{T}|\mathcal{F}_{S}]=X_{S}\text{ a.s.}