Let (Xn,Fn) be a martingale sequence and let S,T be stopping times with respect to the Filtration, FnX and let n∈N such that S≤T≤n then 1. Integrable: XT,XS∈L1(Ω,F,P) 2. Martingale Property: E[XT∣FS]=XS a.s.
Let (Xn)n∈N be a (Fn)n∈N-martingale (resp. sub, resp. super) and let S,T be bounded stopping times where S≤T then E[XS]=E[XT] (≤,≥)
Let (Xt)t≥0 be a right continuous (Ft)t≥0-martingale. Let S,T be stopping times and S≤T≤N for some N∈N then 1. Integrable: XT,XS∈L1(Ω,F,P) 2. Martingale Property: E[XT∣FS]=XS a.s.