FIND ME ON

GitHub

LinkedIn

Motion-Planning Algorithm

🌱

Definition
PathPlanning

Introduction

A motion-planning algorithm evaluates trajectories based on two criteria: 1. Feasible 2. Optimal These approaches can be roughly divided into two categories: 1. Samping-based algorithms 2. Trajectory Optimization algorithms We can formalize it as such: # Definition Given some trajectory θ(t):tRD\boldsymbol\theta(t):t\to \mathbb{R}^{D} for some DND\in\mathbb{N}, the objective is to minimize some cost function F\mathcal{F} w.r.t. θ\boldsymbol\theta i.e. minimizeF[θ(t)]subject toGi[θ(t)]0,i=1,,mineqHi[θ(t)]=0,i=1,,meq\begin{align*} \text{minimize}\quad&\mathcal{F}[\boldsymbol\theta(t)]\\ \text{subject to}\quad&\mathcal{G}_{i}[\boldsymbol\theta(t)]\le 0,&i=1,\dots,m_{ineq}\\ &\mathcal{H}_{i}[\boldsymbol\theta(t)]=0,&i=1,\dots,m_{eq} \end{align*}where Gi[θ(t)]\mathcal{G}_{i}[\boldsymbol\theta(t)] are inequality constraint Functionals such as: ^30a9ac - joint angle limits and Hi[θ(t)]\mathcal{H}_{i}[\boldsymbol\theta(t)] are task-dependent equality constraints such as: - desired start and end configurations & velocities - desired end-effector orientation (e.g. holding a cup with water upright)

Linked from