FIND ME ON

GitHub

LinkedIn

Semicontinuous

🌱

Definition
Analysis

Let XX be a topological space and let ff be a function from XX into R\mathbb{R}. 1. ff is lower semicontinuous on R\mathbb{R} if: 2. 𝛼R∀𝛼∈\mathbb{R}, the set {𝑥𝑋:𝑓(𝑥)>𝛼}\{𝑥∈𝑋:𝑓(𝑥)>𝛼\} is open in XX or; 3. xX\forall x\in X lim infnf(xn)f(x)\liminf_{ n \to \infty } f(x_{n})\ge f(x)for any sequence {xn}\{ x_{n} \} in XX that converges to xx. 44. is upper semicontinuous on R\mathbb{R} if 𝛼R∀𝛼∈\mathbb{R}, the set {𝑥𝑋:𝑓(𝑥)<𝛼}\{𝑥∈𝑋:𝑓(𝑥)<𝛼\} is open in XX.

For a function ff to be continuous at aa means that if xx is near aa then f(x)f(x) is nearly equal to f(a)f(a). For a function ff to be lower semicontinuous at aa means that if xx is near aa then f(x)f(x) is greater than or equal to f(a)f(a), or at least nearly so.

Linked from