FIND ME ON

GitHub

LinkedIn

Dynamic Programming

🌱

Control

Consider the problem of minimizing J(t0,x0,u)=J(u)=∫t0t1L(t,x(t),u(t)) dt+Q(x(t1))J(t_{0},x_{0},u)=J(u)=\int\limits _{t_{0}}^{t_{1}}L(t,x(t),u(t)) \, dt +Q(x(t_{1}))where u:R→U, (UāŠ†Rm)u:\mathbb{R}\to \mathcal{U},\,(\mathcal{U}\subseteq \mathbb{R}^{m}), L:RƗRnƗRm→RL:\mathbb{R}\times \mathbb{R}^{n}\times \mathbb{R}^{m}\to \mathbb{R} is the running cost (o/w referred to as the Lagrangian), Q:Rn→RQ:\mathbb{R}^{n}\to \mathbb{R} is the terminal cost, all subject to the following dynamics xĖ™(t)=f(x(t),u(t),t)x(t0)=x0\begin{align*} \dot{x}(t)&= f(x(t),u(t),t)\\ x(t_{0})&= x_{0} \end{align*}āˆ€t≄t0\forall t\ge t_{0} where f:RnƗRmƗR→Rnf:\mathbb{R}^{n}\times \mathbb{R}^{m}\times \mathbb{R}\to \mathbb{R}^{n}. The goal of dynamic programming is to consider a family of minimization problems J(t,X,u)=∫tt1L(Ļ„,x(Ļ„),u(Ļ„)) dĻ„+Q(x(t1))āˆ€t∈[t0,t1)J(t,\mathbf{X},u)=\int\limits _{t}^{t_{1}}L(\tau,x(\tau),u(\tau)) \, d\tau+Q(x(t_{1})) \quad\forall t\in[t_{0},t_{1})where X∈Rn\mathbf{X}\in\mathbb{R}^{n} and x(t)=Xx(t)=\mathbf{X}. Our goal is to derive a dynamic relationship among these problems and solve all of them. To do this we introduce the Value Function V(t,X)=inf⁔u[t,t1]{J(t,X,u)}V(t,\mathbf{X})=\inf_{u[t,t_{1}]}\{ J(t,\mathbf{X},u) \}where the control is restricted to future time. We also wish to have V(t1,X)=Q(X)āˆ€X∈RnV(t_{1},\mathbf{X})=Q(\mathbf{X})\quad\forall \mathbf{X}\in\mathbb{R}^{n}

Linked from