FIND ME ON

GitHub

LinkedIn

Linearization of Nonlinear Control System

🌱

Control

The linearization of a control system for t>t0t>t_{0} around p~=(x~(t),u~(t))\tilde{p}=(\tilde{x}(t),\tilde{u}(t)) ofxĖ™(t)=f(x(t),u(t),t)yĖ™(t)=g(x(t),u(t),t)\begin{align*} \dot{x}(t)&=f(x(t),u(t),t)\\ \dot{y}(t)&=g(x(t),u(t),t) \end{align*}is given by{xĖ™(t)=āˆ‚fāˆ‚x∣p~(t)x(t)+āˆ‚fāˆ‚u∣p~(t)u(t)yĖ™(t)=āˆ‚gāˆ‚x∣p~(t)x(t)+āˆ‚gāˆ‚u∣p~(t)u(t)\begin{cases} \dot{x}(t)=\frac{ \partial f }{ \partial x } |_{\tilde{p}(t)}x(t)+\frac{ \partial f }{ \partial u } |_{\tilde{p}(t)}u(t) \\ \dot{y}(t)=\frac{ \partial g }{ \partial x } |_{\tilde{p}(t)}x(t)+\frac{ \partial g }{ \partial u } |_{\tilde{p}(t)}u(t) \end{cases}