FIND ME ON

GitHub

LinkedIn

State Observer Problem

🌱

Control

Consider the LTIC system x˙(t)=Ax(t)+Bu(t)y(t)=Cx(t)+Du(t)\begin{align*} \dot{x}(t)&=Ax(t)+Bu(t)\\ y(t)&=Cx(t)+Du(t) \end{align*} We know only the input and the output (i.e. u,yu,y) and we want to approximate the state asymptotically in time. So, we want a x^\hat{x} s.t. limtx(t)x^(t)=0\lim_{ t \to \infty } \lVert x(t)-\hat{x}(t) \rVert =0The function x^\hat{x} is an “estimator” or “observer” which itself is an LTIC system. So we wish to find an LTIC system w˙(t)=Mw(t)+[NP][y(t)u(t)]x^(t)=Qw(t)+[RS][y(t)u(t)]\begin{align*} \dot{w}(t)&=Mw(t)+\begin{bmatrix}N & P \end{bmatrix}\begin{bmatrix}y(t) \\ u(t)\end{bmatrix}\\ \hat{x}(t)&=Qw(t)+\begin{bmatrix}R & S\end{bmatrix}\begin{bmatrix}y(t) \\ u(t)\end{bmatrix} \end{align*}s.t. limtx(t)x^(t)=0,x(0),w(0),u(t)\lim_{ t \to \infty }\lVert x(t)-\hat{x}(t) \rVert=0,\forall x(0),w(0),u(t).