FIND ME ON

GitHub

LinkedIn

Barrier Certificate

🌱

Definition
SafeControl

Let Cu\mathcal{C}_{u} be an unsafe set and C0\mathcal{C}_{0} be the set we start in. Let B:RnRB:\mathbb{R}^{n}\to \mathbb{R} where B(x)0B(x)\le 0, xC0\forall x\in \mathcal{C}_{0} and B(x)>0B(x)>0, xCu\forall x\in \mathcal{C}_{u}. Then BB is a barrier certificate if B˙(x)0    C is invariant.\dot{B}(x)\le 0\implies \mathcal{C}\text{ is invariant}.i.e. BB is a barrier certificate if it being strictly decreasing implies C\mathcal{C} is an Invariant Set.

By picking the safe set C\mathcal{C} to be the complement of the unsafe set: C:=Cuc\mathcal{C} :=\mathcal{C}_{u}^{c}with B(x)=h(x)B(x)=-h(x) the barrier certificate conditions become: h˙(x)0\dot{h}(x)\ge 0which implies that C\mathcal{C} is invariant