FIND ME ON

GitHub

LinkedIn

Invariant Set

🌱

Definition
SafeControl

Suppose x˙=f(x)\dot {x}=f(x) is a dynamical system, x(t,x0)x(t,x_{0}) is a trajectory, and x0x_{0} is the initial point. Let O:={xRnφ(x)=0}\mathcal {O}:=\left\lbrace x\in \mathbb {R} ^{n}\mid \varphi (x)=0\right\rbrace  where φ\varphi is a real-valued function. The set O\mathcal{O} is said to be positively invariant if x0O    x(t,x0)O  t0.x_{0}\in \mathcal{O} \implies x(t,x_{0})\in \mathcal{O}\ \forall \ t\geq 0.In other words, once a trajectory of the system enters O\mathcal {O}, it will never leave it again.

Linked from