FIND ME ON

GitHub

LinkedIn

Wasserstein metric

🌱

Definition
Metrics

Let (X,d)(\mathcal{X},d) be a Polish metric space, and let 1p<1\le p<\infty. For any two Probability Measures μ,ν\mu,\nu on X\mathcal{X} the Wasserstein Metric of order pp between μ\mu and ν\nu is defined by the formula Wp(μ,ν)=(infπΠ(μ,ν)X×Xd(x,y)pdπ(x,y))1/p=inf{[E[d(X,Y)p]1/p,law(X)=μ,law(Y)=ν}\begin{align*} W_{p}(\mu,\nu)&=\left( \inf_{\pi \in\Pi(\mu,\nu)}\int\limits _{\mathcal{X}\times \mathcal{X}}d(x,y)^{p} \, d\pi(x,y) \right)^{1/p}\\ &=\inf\left \{ [E_{}\left[ d(X,Y)^{p} \right]^{1/p},\,\text{law}(X)=\mu,\,\text{law}(Y)=\nu \right\} \end{align*}

The Wasserstein metric of order 1 for any two measures μ,νP(X)\mu,\nu \in\mathcal{P}(\mathbb{X}) is defined as W1(μ,ν)=infηH(μ,ν)X×Xη(dx,dy)xyW_{1}(\mu,\nu)=\inf_{\eta \in\mathcal{H}(\mu,\nu)}\int\limits _{\mathbb{X}\times \mathbb{X}}\eta(dx,dy)|x-y| where H(μ,ν)\mathcal{H}(\mu,\nu) denotes the set of probability measures on X×X\mathbb{X}\times \mathbb{X} with the first marginal μ\mu and second marginal ν\nu. Furthermore we equivalently have W1(μ,ν)=supfLip1fdμfdνW_{1}(\mu,\nu)=\sup_{\lVert f \rVert _{Lip}\le 1}\left|\int\limits f \, d\mu -\int\limits f \, d\nu \right|where fLip:=supxyf(x)f(y)dX(x,y)\lVert f \rVert _{Lip}:=\sup_{x\not=y} \frac{f(x)-f(y)}{d_{\mathbb{X}}(x,y)}and dXd_{\mathbb{X}} is the metric on X\mathbb{X}.

Linked from