NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
🌱
Let (X,d)(\mathcal{X},d)(X,d) be a Polish space, and 1≤p<∞1\le p<\infty1≤p<∞; then the Wasserstein metric WpW_{p}Wp metrizes the weak convergence in Pp(X)P_{p}(\mathcal{X})Pp(X). i.e. if (μk)k∈N⊂Pp(X)(\mu_{k})_{k\in\mathbb{N}}\subset P_{p}(\mathcal{X})(μk)k∈N⊂Pp(X) and μ∈Pp(X)\mu \in P_{p}(\mathcal{X})μ∈Pp(X), then the statements μk converges weakly in Pp(X) to μ\mu_{k} \,converges\,weakly\,in\,P_{p}(\mathcal{X})\,to\,\muμkconvergesweaklyinPp(X)toμand Wp(μk,μ)→0W_{p}(\mu_{k},\mu)\to0Wp(μk,μ)→0are equivalent.