FIND ME ON

GitHub

LinkedIn

Weak convergence in Wasserstein space

🌱

Definition
Metrics

Definition

Let (X,d)(\mathcal{X},d) be a Polish space, and 1p<1\le p<\infty. Let (μk)kNPp(X)(\mu_{k})_{k\in\mathbb{N}}\subset P_{p}(\mathcal{X}) and μPp(X)\mu \in P_{p}(\mathcal{X}) where Pp(X)P_{p}(\mathcal{X}) is the Wasserstein space. Then μk\mu_{k} is said to converge weakly in Pp(X)P_{p}(\mathcal{X}) if any one of the following properties is satisfied for any x0Xx_{0}\in\mathcal{X}: 1. μkμ\mu_{k}\to \mu and d(x0,x)pdμk(x)d(x0,x)pdμ(x)\int\limits d(x_{0},x)^{p} \, d\mu_{k}(x)\to \int\limits d(x_{0},x)^{p} \, d\mu(x) 2. μkμ\mu_{k}\to \mu and lim supkd(x0,x)pdμk(x)d(x0,x)pdμ(x)\limsup_{ k \to \infty } \int\limits d(x_{0},x)^{p} \, d\mu_{k}(x)\le \int\limits d(x_{0},x)^{p} \, d\mu(x) 3. μkμ\mu_{k}\to \mu and limRlim supkd(x0,x)Rd(x0,x)pdμk(x)=0\lim_{ R \to \infty } \limsup_{ k \to \infty } \int\limits_{d(x_{0},x)\ge R} d(x_{0},x)^{p} \, d\mu_{k}(x)=0 4. For all continuous functions φ\varphi with φ(x)C(1+d(x0,x)p)|\varphi(x)|\le C(1+d(x_{0},x)^{p}), CRC\in\mathbb{R}, one has φ(x)dμk(x)φ(x)dμ(x)\int\limits \varphi(x) \, d\mu_{k}(x)\to \int\limits \varphi(x) \, d\mu(x)

Linked from