FIND ME ON

GitHub

LinkedIn

Special Orthogonal Group

🌱

Definition
PathPlanningManifolds

Definition

We define the set of all rotation matrices as the special orthogonal group on R3\mathbb{R}^{3} SO(3):={CR3×3CC=1&det(C)=1}SO(3):=\{ \mathbf{C}\in\mathbb{R}^{3\times3}\mid \mathbf{CC}^{\top}=\mathbf{1}\,\&\,\det(\mathbf{C})=1 \} i.e. it is the set of all orthonormal matrices on R3×3\mathbb{R}^{3\times3}.