NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
🌱
We define the set of all rotation matrices as the special orthogonal group on R3\mathbb{R}^{3}R3 SO(3):={C∈R3×3∣CC⊤=1 & det(C)=1}SO(3):=\{ \mathbf{C}\in\mathbb{R}^{3\times3}\mid \mathbf{CC}^{\top}=\mathbf{1}\,\&\,\det(\mathbf{C})=1 \}SO(3):={C∈R3×3∣CC⊤=1&det(C)=1} i.e. it is the set of all orthonormal matrices on R3×3\mathbb{R}^{3\times3}R3×3.